Semi-discrete Finite Element Approximations for Linear Parabolic Integro-di erential Equations with Integrable Kernels
نویسنده
چکیده
In this paper we consider nite element methods for general parabolic integro-diierential equations with integrable kernels. A new approach is taken, which allows us to derive optimal L p (2 p 1) error estimates and superconvergence. The main advantage of our method is that the semidiscrete nite element approximations for linear equations, with both smooth and integrable kernels, can be treated in the same way without the introduction of the Ritz-Volterra projection, therefore, one can make fully use of the results of nite element approximations for elliptic problems.
منابع مشابه
Long Time Stability of Finite Element Approximations for Parabolic Equations with Memory
In this paper we derive the sharp long time stability and error estimates of nite element approximations for parabolic integro di erential equations First the exponential decay of the solution as t is studied and then the semi discrete and fully discrete approximations are considered using the Ritz Volterra projection Other related problems are studied as well The main feature of our analysis i...
متن کاملFinite Volume Element Approximations of Integro-differential Parabolic Problems
In this paper we study nite volume element approximations for two dimensional parabolic integro di erential equations arising in modeling of nonlocal reactive ows in porous media These types of ows are also called NonFickian ows and exhibit mixing length growth For simplicity we only consider linear nite vol ume element methods although higher order volume elements can be considered as well und...
متن کاملFinite Volume Element Approximations of Nonlocal Reactive Flows in Porous Media
In this paper we study nite volume element approximations for two dimensional parabolic integro di erential equations arising in modeling of nonlocal reactive ows in porous media These type of ows are also called NonFickian ows with mixing length growth For simplicity we only consider linear nite volume element methods although higher order volume elements can be considered as well under this f...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملFinite Element Methods for Optimal Control Problems Governed by Linear Quasi-parabolic Integro-differential Equations
Linear quasi-parabolic integro-differential equations and their control appear in many scientific problems and engineering applications such as biology mechanics, nuclear reaction dynamics, heat conduction in materials with memory, and visco-elasticity, etc.. The existence and uniqueness of the solution of the linear quasi-parabolic integro-differential equations have been studied by Wheeler M....
متن کامل